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J.  Phys. A: Math. Gen. 20 (1987) 367-374. Printed in the UK 

Symmetries and a hierarchy of the general modified K d v  

equation 

Tian Chou t  
International Centre for Theoretical Physics, Miramare, Trieste, Italy 

Received 6 March 1986 

Abstract. Two groups of symmetries and their Lie algebra properties for the modified KdV 

equation are extended to the general modified K d v  equation and the Miura transformation 
between the general KdV equation and the general modified K d V  equation is also established. 

In Tian Chou (1985,1987), we discussed the general Kdv (GKdv) equation 

U ,  + u,,,~ + 6 M U ,  + 6fu - X (  f' + 1 2f2) = 0 ( 1 )  

wheref is an  arbitrary function of t. For the G K d v  equation, we have found its Lax pair: 

(2) 
( U  + 2k), 

C l = (  U,, - (4 k + 2 U ) (  k - U )  - ( U  + 2 k )  , k - U  0 ' ) d x + (  

where k = xf+ Ag, A is an  arbitrary constant and g (  t )  = exp( - 5  12fdt) ( g ' +  12fg = 0 ) .  
Writing the Lax equation 

as the Riccati form, we have 

p r =  k -  U - p 2  

cp, = - (4k+2u)(k - U - p z ) +  U , ,  - 2 ( ~ , + 2 f ) p  

( c p  = 02/01). 

From (3) 

U = k-cp, - 9'. 

Substituting this into (4), we obtain 

c p l  + PY,, -6v29, + 6kvv + 6fp = 0. (5) 
Therefore we have the transformation between the G K d v  equation (1 )  and equation (5) :  

U=xf+Ag-cp, -cp'. (6)  
In particular, when A =0,  equation ( 5 )  is reduced to 

vt  + c ~ ~ ~ ,  -6p2p,  + 6xf& + 6 f p  = 0 ( 7 )  

(3) 

(4) 
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and (6) is reduced to 
2 u=xf-cp,-cp. 

If we change cp to i&, then ( 7 )  is changed to 

G, + 4,,, + 64*4;, + 6xf4, + 6f4 = 0. 

When f =0, (1) is reduced to the K d v  equation 

U, + U,,, + 6uu, = 0 

and ( 7 )  or (9) is reduced to the modified K d v  equation 

c p r  + (Pxxx -6(P2cp, = 0 
or 

4, + &,,, + 6G2& = 0 

and transformation (6) is reduced to the Miura transformation 
2 

U = -cpx - c p .  

We call ( 7 )  or (9) the general modified K d v  ( G M K d v )  equation and (8) is the Miura 
transformation as well. 

Since the c M K d v  equation is invariant when we change cp to -cp, the transformation 
(8 )  can be written as 

U = x f +  cpx - (P2. (10) 
We can establish the Miura transformation, (10) or (8), directly. In  fact, substituting 
(10) into ( l ) ,  we can obtain 

( D  - 2cp)(cp, + vxXx -6cp2cpr + 6xfcpX + 6fp) = 0 

( D  = d /dx) .  

Therefore, we can change equations (3) and (4) to 
It is trivial that cp is a solution of ( 5 )  if and only if -cp is a solution of (5) as well. 

( 1 1 )  

(12)  
Then U ’  is also a solution of (1) if cp satisfies (3) and (4). From (3) and (4), we obtain 
the relation between U and U’: 

-cp, = k - U ’  - cp’ 

- c p r  = - (4k+Zu’)(k - U’- c p 2 )  + u : ~ +  2( U: +2f)cp. 

U ’ =  U + 2 c p X .  

This is a Backlund transformation (in Darboux type) of the G K d v  equation and is the 
same as the result in Tian Chou (1987). 

The above discussion can be considered as an extension of the results in Chen (1974). 
Furthermore, we discuss the symmetries of the G M K d v  equation 

cp, = K 

K = - ( cprXr - 6cp *cpX + 6xfcpY + 6fcp 1. 
At first, we can check that 

@ = (1/g)(D2+4cp2+4cp,D-’p) 

(D-’  is the inverse operator of D) satisfies the equation 

d@/dt  = [ K ‘ ,  @] 
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where K ' =  -[D3+(xf-cp2)D-12cpcpx+6fl (see the appendix). Hence, 0 is a strong 
symmetry (or recursion operator) of the G M K d v  equation (Oevel and Fokas 1984, Tian 
Chou 1985). It is easy to show that @ is a hereditary symmetry (Olver 1977). Therefore, 
a hierarchy of the G M K d v  equation is generated by @ and (13) :  

U, = K ,  

K ,  = W"' n = 0, 1 ,  2, . . . 
and @ is the strong symmetry of all of equations (15) .  

We point out that there is a transformation which links the modified K d v  equation 
$, + - 6 4 ~ ~ 4 6  = 0 to the G M K d V  equation: 

PI + cpxxx6cp2cp* + 6xfpx + ($9 = 0 

However, this transformation cannot transform the M K d v  equations of high order into 
the G M K d v  equations of high order. 

Next, we present two symmetries of the G M K d v  equation as follows: 

C O  = ( l / J d p x  

r1 = 3 g - 3 / 2  g3'2 dt(cp,+6f(xcp),)+(xcp), I 
= 3 g3l2 d t  @a,+ (xp),. I 

(We can check that go and T~ satisfy the equations da,/dr = K'[c+,] and d r , / d t  = K ' [ T ] ]  
directly.) Therefore, two groups of symmetries are generated by go, T~ and @: 

U, = @'"Uo m = 0 , 1 , 2 , .  

7, = on-lr ,  

= 3  g3'2 dtu ,+@"- l (xp)x  n = 1 , 2 ,  , . . I 
Theorem. (T, ( m  = 0 ,  1 , 2 , .  . .) and T, ( n  == 1 , 2 , .  . .) satisfy the Lie algebra 

(i) [gm9 a n 1  = O  
(ii) [U,, ~ , l =  (2m + 
(iii) [r,, T,,] = 2 ( m  - n)T,+,-] 

To prove this theorem, we need the following lemmas. 

m , n = 0 , 1 , 2  , . . .  
m = 0 , 1 , 2  , . . . ,  n = 1 , 2  , . . .  
m, n = 1 , 2 ,  . . . 

( [ U ,  b ]  = U ' [  b ]  - b ' [ a ] ) .  

Lemma 1. 

Proof: First, we can check that 

@'[a,] = [ab, @I. 

@[go, a1 =[(+o, @a1 

and (17)  is equivalent to 
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for any function a, i.e. @ commutes with uo (Fuchssteiner 1981). Next, since @ is a 
hereditary symmetry, we can also prove that @ commutes with U,, ( n  = 1 ,2 ,  . . .) (Tian 
Chou 1987). Therefore, (16) is valid. 

Lemma 2. 

Prooj 

Lemma 3. 

Roo$ Notice that D-’(xcpD) = xcp - D-’((xcp),) - D-’cp, we can check it directly. 

Prooj According to lemma 2, (19) is established for n = O .  Notice that 

(@a)’[b]=@’[b]a+@a’[b] (20) 

is valid for any operator @ and any functions a and b (Li and  Zhu 1985a, b),  then we 
can prove this lemma by using induction and  lemma 3. 
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Proof: Using (18), we can check it directly. 

Prooj According to lemma 6, this is valid when m = 2. Then we can prove it by using 
(18), (20) and induction. 

Lemma 8. 

[@"-'(xcp),, @"-'(xcp),] = 2(m - n)~"'"-'(xcp), m , n = l , 2  , . . . .  ( 2 2 )  

Proof: According to lemma 7, (22) is valid for any m when n = 1. Using (20), (18) 
and the hereditary property of @ (Fuchssteiner 1981), we can prove 

@'[ Qn - (xcp ),I@ " -'(xcp )x - (@" - I  (xcp ), )'[@(xcp 1, 1 
= Q n  - I@' [  (x(0 ),I@ " - I  (xcp )x - @(@" -' (xcp ), ) '[ @ (xcp ) ,I. 

Then we can prove (22) by using induction. 

Proof of the theorem. 
(i) is the direct result of lemma 1. 
(ii) From lemma 5 

[ u m ,  ~ , I = [ ( ~ m , 3 h ( ~ , + Q ) " - ' ( x c p ) x I  ( h  = g 3 / 2  dt)  

= [ g m 3  @."-'(x~p)xI 

= (2m + l ) ~ , , , + " - ~ .  

(iii) From lemmas 5 and 8 

[T,, Tn] = [3hum +@"-'(xcp),, 3hU" +@n-l(Xcp),] 

= 3 h [ u , ,  @ n - ' ( ~ c p ) , ] + 3 h [ @ m - ' ( x c p ) , ,  a,]+[@"'-'(xcp),, @"-'(xcp),] 

=6h(m - n ) u m + , - , + 2 ( m  - n ) V " n - 2 ( ~ ~ ) ,  

=2(m - n)T, , ,+ , , - ' .  

We complete the proof. 

For the GMKdv equation 

cpr + qxXx * 6cp2cpx + 6xfcpx + 6fcp = 0 

there is a Lax pair as follows: 

R =  M dx+ N d t  

where 
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( 7  is an arbitrary constant), i.e. d R  - R A R = 0 if and only if 9, + cpXx., * 6cp2cp, + 6xfcpx + 
6 f p  = 0. In particular, when f =  0, g = 1 and (23) is reduced to 

This is a well known Lax pair of the modified K d V  equation. Using the Lax pair (23), 
we can obtain a Backlund transformation (in Darboux type) and  some solutions of 
the c M K d v  equation. 

The above results can be extended to the equation 

9, + cpxxx * 6 cp cp, + 6xfcp, + 6 bx + 6fcp = 0 

where f and 1 are arbitrary functions of t. It corresponds to the general K d v  equation 

U, + U,,, + ~ U U ,  - ~ ( f ’  + 1 2f2) - ( I’ + 121f) = 0. 
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